CHAPTER 23: Unit 2. Electron Transport and ATP

The release of chemical energy stored in organic compounds occurs in two stages: catabolism and respiration. NADH is the electron donor for the electron transport chain which produces the energy carrier ATP through oxidative phosphorylation. During this process electrons are exchanged between molecules, which creates a chemical gradient that allows for the production of ATP. The most vital part of this process is the electron transport chain, which produces more ATP than any other part of cellular respiration.The free energy released during oxidation of a single NADH or FADH2 molecule by O2 is sufficient to drive the synthesis of several molecules of ATP from ADP and Pi, a reaction with a ΔG°′ of +7.3 kcal/mol. The mitochondrion maximizes the production of ATP by transferring electrons from NADH and FADH2 through a series of electron carriers all but one of which are integral components of the inner membrane. This step-by-step transfer of electrons via the electron transport chain (also known as the respiratory chain) allows the free energy in NADH and FADH2 to be released in small increments. At several sites during electron transport from NADH to O2, protons from the mitochondrial matrix are transported uphill across the inner mitochondrial membrane and a proton concentration gradient forms across it (In the following Figure).
In this Figure, stepwise flow of electrons through the electron transport chain from NADH, succinate, and FADH2 to O2 (blue arrows).A mitochondrion is unusual organelle. It acts as the power plants of the cell, are surrounded by two membranes, and have their own genome. They also divide independently of the cell in which they reside, meaning mitochondrial replication is not coupled to cell division. Some of these features are holdovers from the ancient ancestors of mitochondria, which were likely free-living prokaryotes.
Figure Above: A MitochondrionReference: https://www.nature.com/scitable/topicpage/mitochondria-14053590/
The inner mitochondrial membrane contains electron transport proteins like the plasma membrane of prokaryotes, and mitochondria also have their own prokaryote-like circular genome. One difference is that these organelles are thought to have lost most of the genes once carried by their prokaryotic ancestor. Although present-day mitochondria do synthesize a few of their own proteins, the vast majority of the proteins they require are now encoded in the nuclear genome.Mitochondria contain two major membranes. The outer mitochondrial membrane fully surrounds the inner membrane, with a small intermembrane space in between. The outer membrane has many protein-based pores that are big enough to allow the passage of ions and molecules as large as a small protein. In contrast, the inner membrane has much more restricted permeability, much like the plasma membrane of a cell. The inner membrane is also loaded with proteins involved in electron transport and ATP synthesis. This membrane surrounds the mitochondrial matrix, where the citric acid cycle produces the electrons that travel from one protein complex to the next in the inner membrane. At the end of this electron transport chain, the final electron acceptor is oxygen, and this ultimately forms water (H2O). At the same time, the electron transport chain produces ATP. (This is why the the process is called oxidative phosphorylation).During electron transport, the participating protein complexes push protons from the matrix out to the intermembrane space. This creates a concentration gradient of protons that another protein complex, called ATP synthase, uses to power synthesis of the energy carrier molecule ATP (See in the following Figure).
Figure Above: The electrochemical proton gradient and ATP synthase.
Because the outer membrane is freely permeable to protons, the pH of the mitochondrial matrix is higher (i.e., the proton concentration is lower) than that of the cytosol and intermembrane space. An electric potential across the inner membrane also results from the uphill pumping of positively charged protons outward from the matrix, which becomes negative with respect to the intermembrane space. Thus free energy released during the oxidation of NADH or FADH2 is stored both as an electric potential and a proton concentration gradient — collectively, the proton-motive force — across the inner membrane. The movement of protons back across the inner membrane, driven by this force, is coupled to the synthesis of ATP from ADP and Pi by the F0F1 complex.

Reference:
https://www.youtube.com/watch?v=6W-7FG9KlpA

Reference:
https://www.youtube.com/watch?v=y3fyL3Zvn3U

i) Electron Transport Chain
The electron transport chain (in the following Figure) is the last component of aerobic respiration and is the only part of glucose metabolism that uses atmospheric oxygen. Oxygen continuously diffuses into plants; in animals, it enters the body through the respiratory system. Electron transport is a series of redox reactions that resemble a relay race or bucket brigade in that electrons are passed rapidly from one component to the next, to the endpoint of the chain where the electrons reduce molecular oxygen, producing water. There are four complexes composed of proteins, labeled I through IV in the Figure, and the aggregation of these four complexes, together with associated mobile, accessory electron carriers, is called the electron transport chain. The electron transport chain is present in multiple copies in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes.
Figure Above: The electron transport chain is a series of electron transporters embedded in the inner mitochondrial membrane that shuttles electrons from NADH and FADH2 to molecular oxygen. In the process, protons are pumped from the mitochondrial matrix to the intermembrane space, and oxygen is reduced to form waterReference: https://cnx.org/contents/GFy_h8cu@9.85:7oTVAgrZ@7/Oxidative-Phosphorylation
Complex ITo start, two electrons are carried to the first complex aboard NADH. This complex, labeled I, is composed of flavin mononucleotide (FMN) and an iron-sulfur (Fe-S)-containing protein. FMN, which is derived from vitamin B2, also called riboflavin, is one of several prosthetic groups or co-factors in the electron transport chain. A prosthetic group is a non-protein molecule required for the activity of a protein. Prosthetic groups are organic or inorganic, non-peptide molecules bound to a protein that facilitate its function; prosthetic groups include co-enzymes, which are the prosthetic groups of enzymes. The enzyme in complex I is NADH dehydrogenase and is a very large protein, containing 45 amino acid chains. Complex I can pump four hydrogen ions across the membrane from the matrix into the intermembrane space, and it is in this way that the hydrogen ion gradient is established and maintained between the two compartments separated by the inner mitochondrial membrane.Q and Complex IIComplex II directly receives FADH2, which does not pass through complex I. The compound connecting the first and second complexes to the third is ubiquinone (Q). The Q molecule is lipid soluble and freely moves through the hydrophobic core of the membrane. Once it is reduced, (QH2), ubiquinone delivers its electrons to the next complex in the electron transport chain. Q receives the electrons derived from NADH from complex I and the electrons derived from FADH2 from complex II, including succinate dehydrogenase. This enzyme and FADH2 form a small complex that delivers electrons directly to the electron transport chain, bypassing the first complex. Since these electrons bypass and thus do not energize the proton pump in the first complex, fewer ATP molecules are made from the FADH2 electrons. The number of ATP molecules ultimately obtained is directly proportional to the number of protons pumped across the inner mitochondrial membrane.Complex IIIThe third complex is composed of cytochrome b, another Fe-S protein, Rieske center (2Fe-2S center), and cytochrome c proteins; this complex is also called cytochrome oxidoreductase. Cytochrome proteins have a prosthetic group of heme. The heme molecule is similar to the heme in hemoglobin, but it carries electrons, not oxygen. As a result, the iron ion at its core is reduced and oxidized as it passes the electrons, fluctuating between different oxidation states: Fe++ (reduced) and Fe+++ (oxidized). The heme molecules in the cytochromes have slightly different characteristics due to the effects of the different proteins binding them, giving slightly different characteristics to each complex. Complex III pumps protons through the membrane and passes its electrons to cytochrome c for transport to the fourth complex of proteins and enzymes (cytochrome c is the acceptor of electrons from Q; however, whereas Q carries pairs of electrons, cytochrome c can accept only one at a time).Complex IVThe fourth complex is composed of cytochrome proteins c, a, and a3. This complex contains two heme groups (one in each of the two cytochromes, a, and a3) and three copper ions (a pair of CuA and one CuB in cytochrome a3). The cytochromes hold an oxygen molecule very tightly between the iron and copper ions until the oxygen is completely reduced. The reduced oxygen then picks up two hydrogen ions from the surrounding medium to make water (H2O). The removal of the hydrogen ions from the system contributes to the ion gradient used in the process of chemiosmosis.
ii) Chemiosmosis
In chemiosmosis, the free energy from the series of redox reactions just described is used to pump hydrogen ions (protons) across the membrane. The uneven distribution of H+ ions across the membrane establishes both concentration and electrical gradients (thus, an electrochemical gradient), owing to the hydrogen ions’ positive charge and their aggregation on one side of the membrane.If the membrane were open to diffusion by the hydrogen ions, the ions would tend to diffuse back across into the matrix, driven by their electrochemical gradient. Recall that many ions cannot diffuse through the nonpolar regions of phospholipid membranes without the aid of ion channels. Similarly, hydrogen ions in the matrix space can only pass through the inner mitochondrial membrane through an integral membrane protein called ATP synthase (see the following Figure). This complex protein acts as a tiny generator, turned by the force of the hydrogen ions diffusing through it, down their electrochemical gradient. The turning of parts of this molecular machine facilitates the addition of a phosphate to ADP, forming ATP, using the potential energy of the hydrogen ion gradient.
Figure Above: ATP synthase is a complex, molecular machine that uses a proton (H+) gradient to form ATP from ADP and inorganic phosphate (Pi). (Credit: modification of work by Klaus Hoffmeier).Reference: https://cnx.org/contents/GFy_h8cu@9.85:7oTVAgrZ@7/Oxidative-Phosphorylation
Chemiosmosis is used to generate 90 percent of the ATP made during aerobic glucose catabolism; it is also the method used in the light reactions of photosynthesis to harness the energy of sunlight in the process of photophosphorylation. Recall that the production of ATP using the process of chemiosmosis in mitochondria is called oxidative phosphorylation. The overall result of these reactions is the production of ATP from the energy of the electrons removed from hydrogen atoms. These atoms were originally part of a glucose molecule. At the end of the pathway, the electrons are used to reduce an oxygen molecule to oxygen ions. The extra electrons on the oxygen attract hydrogen ions (protons) from the surrounding medium, and water is formed.
Figure Above: In oxidative phosphorylation, the pH gradient formed by the electron transport chain is used by ATP synthase to form ATP.Reference: https://cnx.org/contents/GFy_h8cu@9.85:7oTVAgrZ@7/Oxidative-Phosphorylation
iii) ATP Yield
The number of ATP molecules generated from the catabolism of glucose varies. For example, the number of hydrogen ions that the electron transport chain complexes can pump through the membrane varies between species. Another source of variance stems from the shuttle of electrons across the membranes of the mitochondria. (The NADH generated from glycolysis cannot easily enter mitochondria.) Thus, electrons are picked up on the inside of mitochondria by either NAD+ or FAD+. As you have learned earlier, these FAD+ molecules can transport fewer ions; consequently, fewer ATP molecules are generated when FAD+ acts as a carrier. NAD+ is used as the electron transporter in the liver and FAD+ acts in the brain.Another factor that affects the yield of ATP molecules generated from glucose is the fact that intermediate compounds in these pathways are used for other purposes. Glucose catabolism connects with the pathways that build or break down all other biochemical compounds in cells, and the result is somewhat messier than the ideal situations described thus far. For example, sugars other than glucose are fed into the glycolytic pathway for energy extraction. Moreover, the five-carbon sugars that form nucleic acids are made from intermediates in glycolysis. Certain nonessential amino acids can be made from intermediates of both glycolysis and the citric acid cycle. Lipids, such as cholesterol and triglycerides, are also made from intermediates in these pathways, and both amino acids and triglycerides are broken down for energy through these pathways. Overall, in living systems, these pathways of glucose catabolism extract about 34 percent of the energy contained in glucose.We can do a little inventory for the breakdown of one molecule of glucose:
One number in this table is still not precise: the ATP yield from NADH made in glycolysis. This is because glycolysis happens in the cytosol, and NADH can’t cross the inner mitochondrial membrane to deliver its electrons to complex I. Instead, it must hand its electrons off to a molecular “shuttle system” that delivers them, through a series of steps, to the electron transport chain.Some cells of your body have a shuttle system that delivers electrons to the transport chain via FADH2. In this case, only 3 ATP are produced for the two NADH of glycolysis.In bacteria, both glycolysis and the citric acid cycle happen in the cytosol, so no shuttle is needed and 5 ATP are produced.30-32 ATP from the breakdown of one glucose molecule is a high-end estimate, and the real yield may be lower. For instance, some intermediates from cellular respiration may be siphoned off by the cell and used in other biosynthetic pathways, reducing the number of ATP produced. Cellular respiration is a nexus for many different metabolic pathways in the cell, forming a network that’s larger than the glucose breakdown pathways alone.
iv) Summary
The electron transport chain is the portion of aerobic respiration that uses free oxygen as the final electron acceptor of the electrons removed from the intermediate compounds in glucose catabolism. The electron transport chain is composed of four large, multiprotein complexes embedded in the inner mitochondrial membrane and two small diffusible electron carriers shuttling electrons between them. The electrons are passed through a series of redox reactions, with a small amount of free energy used at three points to transport hydrogen ions across a membrane. This process contributes to the gradient used in chemiosmosis. The electrons passing through the electron transport chain gradually lose energy, High-energy electrons donated to the chain by either NADH or FADH2 complete the chain, as low-energy electrons reduce oxygen molecules and form water. The level of free energy of the electrons drops from about 60 kcal/mol in NADH or 45 kcal/mol in FADH2 to about 0 kcal/mol in water. The end products of the electron transport chain are water and ATP. A number of intermediate compounds of the citric acid cycle can be diverted into the anabolism of other biochemical molecules, such as nonessential amino acids, sugars, and lipids. These same molecules can serve as energy sources for the glucose pathways.

Reference:
https://www.youtube.com/watch?v=C8VHyezOJD4&t=12s

Reference:
https://www.youtube.com/watch?v=mfgCcFXUZRk